Almost all cells in the nervous system receive inputs from more than one other cell. This is called convergence. Almost all cells have axons that split many times and supply a large number of other nerve cells--perhaps hundreds or thousands. We call this divergence. You can easily see that without convergence and divergence the nervous system would not be worth much: an excitatory synapse that slavishly passed every impulse along to the next cell would serve no function, and an inhibitory synapse that provided the only input to a cell would have nothing to inhibit, unless the postsynaptic cell had some special mechanism to cause it to fire spontaneously. I should make a final comment about the signals that nerve fibers transmit. Although most axons carry all-or-none impulses, some exceptions exist. If local depolarization of a nerve is subthreshold--that is, if it is insufficient to start up an explosive, all-or-none propagated impulse--it will nevertheless tend to spread along the fiber, declining with time and with distance from the place where it began. (In a propagated nerve impulse, this local spread is what brings the potential in the next, resting section of nerve membrane to the threshold level of depolarization, at which regeneration occurs.) Some axons are so short that no propagated impulse is needed; by passive spread, depolarization at the cell body or dendrites can produce enough depolarization at the synaptic terminals to cause a release of transmitter. In mammals, the cases in which information is known to be transmitted without impulses are few but important. In our retinas, two or three of the five nerve-cell types function without impulses. An important way in which these passively conducted signals differ from impulses-- besides their small and progressively diminishing amplitude--is that their size varies depending on the strength of the stimulus. They are therefore often referred to as graded signals. The bigger the signal, the more depolarization at the terminals, and the more transmitter released. You will remember that impulses, on the contrary, do not increase in size as the stimulus increases; instead, their repetition rate increases. And the faster an impulse fires, the more transmitter is released at the terminals. So the final result is not very different. It is popular to say that graded potentials represent an example of analog signals, and that impulse conduction, being all or none, is digital. I find this misleading, because the exact position of each impulse in a train is not in most cases of any significance. What matters is the average rate in a given time interval, not the fine details. Both kinds of signals are thus essentially analog.